Introduction to the Hiram M. Chittenden Locks History and Issues

Fred Goetz
U.S. Army Corps of Engineers
Seattle District

Historic Events

- Since 1850's civic leaders and dreamers planned for a navigation channel from Lake Washington to Puget Sound.
- In the 1880's a small channel and lock at Montlake carries log to mills.
- Other navigation routes considered -- south Lake Union to Elliott Bay; Salmon Bay through Interurban; and from Lake Washington through Beacon Hill.
- In 1912 the Cedar River is diverted from Black River into Lake Washington completing the dissection of the Duwamish into 3 separate basins -- L. Washington/Cedar; Green R; and White R.
- 1916 Locks completed and Lake Washington lowered 9 ft to elevation of Lake Union. Fish Ladder was part of original project.
- By the 1930's at least two stocks have been extirpated chum and pink salmon. Three new stocks introduced - Baker River sockeye, Green River coho and chinook.

More Recent Historic Events

- In 1958, during a drought, the lake reached its lowest elevation on record, 18.83 ft. The following year the most serious intrusion of saltwater into Lake Washington occurred.
- Mid-1960s sees the end of the METRO effluent discharge into south Lake Washington, reducing inflow by about 30 cfs.
- In 1966 a saltwater barrier is added to the large lock.
- In 1976 the fish ladder was rebuilt adding saltwater auxiliary water supply of 160 cfs. The ladder uses 60% of the total water budget during low flow conditions.
- In 1982 small lock disabled, experimentation with large lock for saltwater control -- begin period of miniflushing through 1994.
- Sea-lion predation of steelhead noted as increasing problem. 1996 change in Marine Mammal Protection Act results in removal of 3 nuisance animals and near cessation of predation at the Locks.
- In 1994 begin period of smolt passage experimentation and monitoring.

- Originally authorized in 1916 with a small lock, large lock, 6-bay spillway dam, fish ladder and 8.6 mile long ship canal.
- Authorized project purposes are navigation and fish passage.
- The locks passes more recreational craft than any other in the Western Hemisphere, peak usage from May-September.
- Secondary uses include flood and water quality protection (prevention of salinity intrusion into Lake Washington).
- The Locks and the Lake Washington Ship Canal is the outlet for a tri-lake system, Lakes Sammamish, Washington and Union: total watershed area is 1246 km^{2.}
- The project was not built with adequate downstream fish passage facilities. Prior to 1997, most years from 50-90% of all smolts pass through the large lock and sustained heavy injuries.
- A smolt passage improvement project was completed in 2000 with the addition of 4 low-flow flumes, removal of barnacles, addition of strobe lights at large lock culvert intakes and modification of large lock filling procedures.

Elevation of Lake Washington Pre (1903) and Post Ship Canal (1993)

Vessel Traffic by Month

Issues

Juvenile Fish Passage

- Mortality and injury of juvenile salmon passing through the Locks requires improved conditions. Fish passage improvements were completed in 2000 with full implementation by 2001: through structural and operation changes including experimental technology.
- Have fish passage changes actually improved fish passage survival. Monitoring and evaluation in 1998, 2000, and 2001 (hang-around for the next couple of presentations).
- There isn't enough water in most years to run smolt passage flumes. Evaluating non-structural (saltwater management/lake elevation) and structural alternatives to find more water.
- What is the best way to use the water. Developing conceptual model on fish passage and functional use of the estuary. Monitor and evaluate migratory behavior throughout system -- L.
 Washington, Ship Canal and Shilshole Bay (P. DeVries/B. Footen).

History of Passage Experiments

- * 1994 Slow Fill Experiment by Lockmasters
- * 1995 Prototype Low flow Flume @ 80 cfs
- * 1996 Begin Monitoring Entrainment in L. Lock
- * 1997 Experiment with Low Frequency Sound
- * 1997 Netpen Testing of Sound and Light
- * 1998 Monitor Slowfill in L. Lock/Test Strobe Lights
- * 2000 4 New Flumes@400 cfs; Slowfill as SOP; Removed Barnacles; installed Strobe Lights; Begin use of Passive integrated transponders
- * 2001 Begin use of Strobe Lights

Spillway: prototype flume 1995-1999 and four new flumes 2000

Prototype

4 New Flumes

Large Lock: Chamber and Intrusion of Saltwater -It's Not Your Typical Tidal Action

Locking boats through the large and small locks results in an short-term exchange of freshwater and saltwater

Large Lock: Culvert Discharge during Filling of the Locks is Equivalent to a 10-Minute Large River Freshet

Large Lock: Culvert Intake, Portal and Barnacles -- High Velocity, Bends and Barnacles

Inside the filling culvert, with barnacles clearly visible on bottom and part way up sides.

Strobe-Lights -- Do Smolts Like Disco?

Conceptual Model of Fish Passage Routes or *The Complexion of Our Connections*

Issues

Estuary and Adult Fish Passage

Can the functional value of the "neoestuary" be improved.
 Monitoring information with hydrologic modeling could be used to shape water releases (river plume). Conceptual values include -- concentrating freshwater releases through flumes which concurrently improves fish passage opportunities, increases size of the freshwater lens, reduces salinity and temperature gradients, and exports food (Daphnia) and nutrients. Pilot-work monitoring in 1999, continued in 2001.

Adult Issues

- Do severe environmental gradients need to be reduced. Chinook pass through a 10-11 C temperature increase and 28 ppt salinity decrease change over 240 ft. What can be done?
- Can we improve holding conditions above the Locks. Mid-summer migrants reside in a small, localized area above the Locks for up to 50 days. Monitoring and evaluation are being used to develop concept of "coolwater refuge" -- See posters (D. VanRijn/M. Timco).